Jellyfish Light Sprites & Jellyfish Crop Circles; Are They Related?
Has Ionic Bombardment of the Aquarian Radiation Opened New Dimensions?
Clearest Video of Lightning-Generated ‘Sprites’ High Above Thunderstorms Captured
Are Photonic / Plasmic Life Forms Becoming Visible ?
Do the Crop-Circles have a message?
Source: above – Subscription email from Earth-Keeper.org
Durham, N.C. – Researchers at Duke University’s Pratt School of Engineering
have captured the best images ever produced of “sprites” — mysterious
flashes of light resembling giant undulating jellyfish that can occur
above strong thunderstorms — using a high-speed camera that recorded
thousands of video frames a second.
The researchers said their findings could lead to a better
understanding of the physics and chemistry of this fleeting,
still-unexplained lightning phenomenon. They recorded and analyzed video
of sprites associated with powerful thunderstorms occurring over the
Great Plains during the summer of 2005. Their findings are scheduled to
appear online in Geophysical Research Letters on Feb. 22. The research
was supported by the National Science Foundation.
“By analyzing the high-speed images in sequence, we’ve been able to
clearly define, for the first time, the processes by which sprites
develop and what happens inside of them,” said Steven Cummer,
assistant professor of electrical and computer engineering at Duke’s
Pratt School. “This understanding of sprite structure is a necessary
step to further elucidate sprite dynamics and their possible effects on
the upper atmosphere.”
Sprites are one of the most common of a number of so-called
mesospheric transient luminous events (TLEs) driven by lightning, Cummer
said. Other such lightning-related phenomena include blue jets, elves
and terrestrial gamma ray flashes.
Since sprites were discovered in 1989, scientists have been
attempting to measure and document them, Cummer said. The first
high-speed images of sprites were reported by other researchers in 1999.
Shortly thereafter, a second group captured the first images of sprites
recorded at 1,000 frames per second.
“Each improvement has revealed important new information about the
processes involved and their possible larger scale impact on the upper
atmosphere,” Cummer said in an interview. “However, many sprites develop
too quickly to be fully resolved even at one millisecond time
resolution.”
Sprites typically last for 10 to 100 milliseconds — shorter than the
blink of a human eye, which takes an average of 300 to 400 milliseconds.
Their transience makes sprites difficult to see with the naked eye,
despite their common occurrence in association with certain types of
active thunderstorms, the researchers said.
The vantage point required for a good view also complicates direct
observation of sprites, said Nicolas Jaugey, a member of Cummer’s team
at the Pratt School. Sprites generally form between 20 and 50 miles
above storms and can often be obscured by lower lying thunderclouds.
Therefore, it’s best to view them from a mountaintop or other high point
about 100 to 300 miles away from a storm, he said.
The Pratt team — along with collaborators Walter Lyons and Thomas
Nelson of FMA Research Inc. in Fort Collins, Colo. — set up an
intensified high-speed camera capable of recording more than 5,000
frames per second at the Yucca Ridge Field Station in Fort Collins from
July through August 2005. From that site, the researchers could look out
over the Great Plains to image storms occurring over Kansas and
Nebraska.
Night after night, the group watched the weather forecast for
conditions ripe for sprites, said Jaugey, who was in Fort Collins for
the duration of the research campaign. When a promising storm was
brewing, the researchers pointed the high- speed camera in the right
direction and watched events unfold remotely on a television displaying
video from a low-light camera.
“Sometimes we’d get lucky and there would be a sprite every 10 to 15
minutes,” Jaugey said. “Other times, we would wait for four hours and
only get two events.”
Although much of the time was spent waiting, the researchers had to
keep a very close watch in order to capture the sprites. The events
happen so fast that they would often occur in just one normal speed
video frame, Cummer said.
“They happen about as fast as you can possibly see anything on a normal television,” he said.
“We had to watch for brief flashes and call them out when they
happened,” added Jaugey. This meant that the team had to be particularly
adept at differentiating flashes indicative of a sprite from lightning
itself.
When the proper type of flash was seen, one of the team members
pressed a button to start the high-speed camera recording. The cameras
record so much data so quickly that they can only be activated when a
suspected sprite occurs, they explained.
“When we knew a storm was good, it wasn’t a problem to wait,” Jaugey
said. “When a sprite is captured on film, it’s extremely exciting. You
see just a flash on the TV screen, but when you retrieve the recording
from the high-speed camera and see its development, it’s very
beautiful.”
Over the entire field season, the researchers captured 76 TLE
sequences on seven different nights, 66 of which contained
distinguishable sprite elements, they reported. As luck would have it,
they produced the best images on the night of Aug. 13 — their very last
day in the field, the researchers said. It is those images that the team
analyzed in detail in the latest report.
Based on the observations, sprites normally begin almost 50 miles
high as downward-moving “streamers” that appear spontaneously or at the
bottom of a halo — diffuse flashes of light often associated with
sprites. The streamers then branch out as they move down. At the same
time, a brighter column of light expands both up and down from the
starting point, followed by bright streamers that shoot higher into the
sky.
The group’s videos also revealed new details of “isolated dots,”
bright spots of light — first described by other investigators — that
often glow for longer than any other portion of the sprite. The pictures
show that some of these bright spots form when individual streamers
collide, presumably as a result of electrostatic attraction between
them, according to the researchers.
The greater energy intensity found at those spots makes them
particularly important for understanding the impact of sprites on
atmospheric chemistry, Cummer said.
“Electrons with enough energy to produce light can also produce
interesting chemical species not normally generated,” Cummer said. “Such
chemicals might be long-lived and could be transported to other
locations through the atmosphere.” Because isolated dots persist for the
longest, they may be sites where a significant portion of such chemical
reactions occur.
The new insight into how these bright spots form could lead other
researchers to produce better models of their physics and chemistry, he
said. The Duke team will also conduct further analyses to relate their
sprite image sequences to information they gathered on the
lightning-produced magnetic and electric fields that spawned them.
We should be able to make new connections between the lightning
strength and speed required to produce these phenomena in the upper
atmosphere,” Cummer said.
Other collaborators on the study included Jingbo Li, of Duke, and Elizabeth Gerken, of SRI International in Menlo Park, Calif.
Source
Thanks to: http://2012thebigpicture.wordpress.com